Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265897

RESUMO

The coordination of cell division with stress response is essential for maintaining genome stability in plant meristems. Proteins involved in pre-mRNA splicing are important for these processes in animal and human cells. Based on its homology to the splicing factor SART1, which is implicated in the control of cell division and genome stability in human cells, we analyzed if MDF has similar functions in plants. We found that MDF associates with U4/U6.U5 tri-snRNP proteins and is essential for correct splicing of 2,037 transcripts. Loss of MDF function leads to cell division defects and cell death in meristems and was associated with up-regulation of stress-induced genes and down-regulation of mitotic regulators. In addition, the mdf-1 mutant is hypersensitive to DNA damage treatment supporting its role in coordinating stress response with cell division. Our analysis of a dephosphomutant of MDF suggested how its protein activity might be controlled. Our work uncovers the conserved function of a plant splicing factor and provides novel insight into the interplay of pre-mRNA processing and genome stability in plants.


Assuntos
Arabidopsis , Ribonucleoproteína Nuclear Pequena U5 , Animais , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Divisão Celular/genética , Instabilidade Genômica , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/genética
2.
Cells ; 10(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915825

RESUMO

Higher plants represent a large group of eukaryotes where centrosomes are absent. The functions of γ-tubulin small complexes (γ-TuSCs) and γ-tubulin ring complexes (γ-TuRCs) in metazoans and fungi in microtubule nucleation are well established and the majority of components found in the complexes are present in plants. However, plant microtubules are also nucleated in a γ-tubulin-dependent but γ-TuRC-independent manner. There is growing evidence that γ-tubulin is a microtubule nucleator without being complexed in γ-TuRC. Fibrillar arrays of γ-tubulin were demonstrated in plant and animal cells and the ability of γ-tubulin to assemble into linear oligomers/polymers was confirmed in vitro for both native and recombinant γ-tubulin. The functions of γ-tubulin as a template for microtubule nucleation or in promoting spontaneous nucleation is outlined. Higher plants represent an excellent model for studies on the role of γ-tubulin in nucleation due to their acentrosomal nature and high abundancy and conservation of γ-tubulin including its intrinsic ability to assemble filaments. The defining scaffolding or sequestration functions of plant γ-tubulin in microtubule organization or in nuclear processes will help our understanding of its cellular roles in eukaryotes.


Assuntos
Células/metabolismo , Tubulina (Proteína)/metabolismo , Sequência de Aminoácidos , Animais , Centrossomo/metabolismo , Humanos , Plantas/metabolismo , Tubulina (Proteína)/química
3.
J Exp Bot ; 71(4): 1265-1277, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31693141

RESUMO

γ-Tubulin is associated with microtubule nucleation, but evidence is accumulating in eukaryotes that it also functions in nuclear processes and in cell division control independently of its canonical role. We found that in Arabidopsis thaliana, γ-tubulin interacts specifically with E2FA, E2FB, and E2FC transcription factors both in vitro and in vivo. The interaction of γ-tubulin with the E2Fs is not reduced in the presence of their dimerization partners (DPs) and, in agreement, we found that γ-tubulin interaction with E2Fs does not require the dimerization domain. γ-Tubulin associates with the promoters of E2F-regulated cell cycle genes in an E2F-dependent manner, probably in complex with the E2F-DP heterodimer. The up-regulation of E2F target genes PCNA, ORC2, CDKB1;1, and CCS52A under γ-tubulin silencing suggests a repressive function for γ-tubulin at G1/S and G2/M transitions, and the endocycle, which is consistent with an excess of cell division in some cells and enhanced endoreduplication in others in the shoot and young leaves of γ-tubulin RNAi plants. Altogether, our data show ternary interaction of γ-tubulin with the E2F-DP heterodimer and suggest a repressive role for γ-tubulin with E2Fs in controlling mitotic activity and endoreduplication during plant development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição E2F , Tubulina (Proteína) , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Regulação da Expressão Gênica de Plantas , Tubulina (Proteína)/genética
4.
Cells ; 8(3)2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893853

RESUMO

γ-Tubulin is a conserved member of the tubulin superfamily with a function in microtubule nucleation. Proteins of γ-tubulin complexes serve as nucleation templates as well as a majority of other proteins contributing to centrosomal and non-centrosomal nucleation, conserved across eukaryotes. There is a growing amount of evidence of γ-tubulin functions besides microtubule nucleation in transcription, DNA damage response, chromatin remodeling, and on its interactions with tumor suppressors. However, the molecular mechanisms are not well understood. Furthermore, interactions with lamin and SUN proteins of the LINC complex suggest the role of γ-tubulin in the coupling of nuclear organization with cytoskeletons. γ-Tubulin that belongs to the clade of eukaryotic tubulins shows characteristics of both prokaryotic and eukaryotic tubulins. Both human and plant γ-tubulins preserve the ability of prokaryotic tubulins to assemble filaments and higher-order fibrillar networks. γ-Tubulin filaments, with bundling and aggregating capacity, are suggested to perform complex scaffolding and sequestration functions. In this review, we discuss a plethora of γ-tubulin molecular interactions and cellular functions, as well as recent advances in understanding the molecular mechanisms behind them.


Assuntos
Núcleo Celular/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Ciclo Celular , Humanos , Membrana Nuclear/metabolismo
5.
Biochim Biophys Acta Mol Cell Res ; 1865(5): 734-748, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29499229

RESUMO

γ-Tubulin is essential for microtubule nucleation and also plays less understood roles in nuclear and cell-cycle-related functions. High abundancy of γ-tubulin in acentrosomal Arabidopsis cells facilitated purification and biochemical characterization of large molecular species of γ-tubulin. TEM, fluorescence, and atomic force microscopy of purified high molecular γ-tubulin forms revealed the presence of linear filaments with a double protofilament substructure, filament bundles and aggregates. Filament formation from highly purified γ-tubulin free of γ-tubulin complex proteins (GCPs) was demonstrated for both plant and human γ-tubulin. Moreover, γ-tubulin associated with porcine brain microtubules formed oligomers. Experimental evidence on the intrinsic ability of γ-tubulin to oligomerize/polymerize was supported by conservation of α- and ß-tubulin interfaces for longitudinal and lateral interactions for γ-tubulins. STED (stimulated emission depletion) microscopy of Arabidopsis cells revealed fine, short γ-tubulin fibrillar structures enriched on mitotic microtubular arrays that accumulated at polar regions of acentrosomal spindles and the outer nuclear envelope before mitosis, and were also present in nuclei. Fine fibrillar structures of γ-tubulin representing assemblies of higher order were localized in cell-cycle-dependent manner at sites of dispersed γ-tubulin location in acentrosomal plant cells as well as at sites of local γ-tubulin enrichment after drug treatment. Our findings that γ-tubulin preserves the capability of prokaryotic tubulins to self-organize into filaments assembling by lateral interaction into bundles/clusters help understanding of the relationship between structure and multiple cellular functions of this protein species and suggest that besides microtubule nucleation and organization, γ-tubulin may also have scaffolding or sequestration functions.


Assuntos
Citoesqueleto/genética , Proteínas Associadas aos Microtúbulos/genética , Agregados Proteicos/genética , Tubulina (Proteína)/genética , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Arabidopsis/química , Arabidopsis/genética , Citoesqueleto/química , Proteínas Associadas aos Microtúbulos/química , Microtúbulos/química , Microtúbulos/genética , Mitose/genética , Polimerização , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestrutura
6.
New Phytol ; 198(3): 685-698, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23437871

RESUMO

Nitrilases are highly conserved proteins with catabolic activity but much less understood functions in cell division and apoptosis. To elucidate the biological functions of Arabidopsis NITRILASE1, we characterized its molecular forms, cellular localization and involvement in cell proliferation and plant development. We performed biochemical and mass spectrometry analyses of NITRILASE1 complexes, electron microscopy of nitrilase polymers, imaging of developmental and cellular distribution, silencing and overexpression of nitrilases to study their functions. We found that NITRILASE1 has an intrinsic ability to form filaments. GFP-NITRILASE1 was abundant in proliferating cells, distributed in cytoplasm, in the perinuclear area and associated with microtubules. As cells exited proliferation and entered differentiation, GFP-NITRILASE1 became predominantly nuclear. Nitrilase silencing dose-dependently compromised plant growth, led to loss of tissue organization and sustained proliferation. Cytokinesis was frequently aborted, leading to enlarged polyploid cells. In reverse, independently transformed cell lines overexpressing GFP-NITRILASE1 showed slow growth and increased rate of programmed cell death. Altogether, our data suggest that NITRILASE1 homologues regulate the exit from cell cycle and entry into differentiation and simultaneously are required for cytokinesis. These functions are essential to maintain normal ploidy, genome stability and tissue organization.


Assuntos
Aminoidrolases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Instabilidade Genômica , Hidrolases Anidrido Ácido/genética , Aminoidrolases/química , Aminoidrolases/genética , Aminoidrolases/ultraestrutura , Arabidopsis/citologia , Ciclo Celular/genética , Morte Celular/genética , Diferenciação Celular/genética , Proliferação de Células , Citoplasma/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Neoplasias/genética , Interferência de RNA
7.
Planta ; 234(3): 459-76, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21533644

RESUMO

The nodulin/glutamine synthetase-like protein (NodGS) that we identified proteomically in Arabidopsis thaliana is a fusion protein composed of an N-terminal amidohydrolase domain that shares homology with nodulins and a C-terminal domain of prokaryotic glutamine synthetase type I. The protein is homologous to the FluG protein, a morphogenetic factor in fungi. Although genes encoding NodGS homologues are present in many plant genomes, their products have not yet been characterized. The Arabidopsis NodGS was present in an oligomeric form of ~700-kDa, mainly in the cytosol, and to a lesser extent in the microsomal membrane fraction. The oligomeric NodGS was incorporated into large heterogeneous protein complexes >700 kDa and partially co-immunoprecipitated with γ-tubulin. In situ and in vivo microscopic analyses revealed a NodGS signal in the cytoplasm, with endomembranes, particularly in the perinuclear area. NodGS had no detectable glutamine synthetase activity. Downregulation of NodGS by RNAi resulted in plants with a short main root, reduced meristematic activity and disrupted development of the root cap. Y2H analysis and publicly available microarray data indicated a role for NodGS in biotic stress signalling. We found that flagellin enhanced the expression of the NodGS protein, which was then preferentially localized in the nuclear periphery. Our results point to a role for NodGS in root morphogenesis and microbial elicitation. These data might help in understanding the family of NodGS/FluG-like fusion genes that are widespread in prokaryotes, fungi and plants.


Assuntos
Proteínas de Arabidopsis/fisiologia , Flagelina/metabolismo , Glutamato-Amônia Ligase/fisiologia , Proteínas de Membrana/fisiologia , Morfogênese/fisiologia , Proteínas de Plantas/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flagelina/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...